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THE STABILITY OF ORTHOTROPIC CYLINDRICAL SHELLS

By

0. N. Len'ko
Bachelor of Science

Riga

This paper presents a study of the stability of open circular
cylindrical shells (panels) subjected to compression along the
generator. It is assumed that the shell is orthotropic. This is the
case with closely spaced longitudinal and lateral stiffeners if they
are considered to be "spread" over the entire surface of the shell.

The closer the stiffeners are spaced, the more accurate this assumption
will be. Structures also make use of shells of materials having
anisotropic elastic properties (for example, plywood, plastics,
reinforced materials, sandwich skins, etc.), which may be considered

to be orthotropic.

The article considers the stability of the panel "in the large':
the buckling deflections are considered to be comparable to the thickness
of the shell. This leads to the consideration of the nonlinear problem
and the associated complex solution. However, this complexity is
unavoidable; we know that the solutions of the problem of the stability
of shells "in the small", based on linear theory, are not confirmed
experimentally.

On the basis of the results presented in this paper, it is
possible, using the known geometric parameters of the panel and the
elastic properties of the material, to determine the critical
compressive stresses for the panel and to determine its load-carrying
capability.

It should be remarked that the results of the first four sections
are based on assumptions concerning the pattern of the wave formation
which must be checked experimentally. Section 5 presents a somewhat
refined solution.

- This study is an extension of the investigations of A. S. Vol'mir
on the stability of isotropic cylindrical panels (Ref. 3).




1. FUNDAMENTAL RELATIONS OF THE THEORY OF THE FLEXIBLE
CIRCULAR CYLINDRICAL ORTHOTROPIC SHELL

We will consider the portion of the circular cylindrical
orthotropic shell bounded by two arcs and two generators.

Assume that the material of the shell at each point possesses
three mutually perpendicular planes of elastic symmetry and that at

each point, one of the planes of elastic symmetry is tangential to the
middle surface.

In the general case, orthotropic shells with material /500
properties variable across the shell thickness are considered. Such
shells include shells of sandwich materials, panels stiffened by
longitudinal and lateral ribs, etc.

We will introduce the following notation (Fig. 1):
r - radius of curvature of the shell;
9 - central angle subtended by the generating arc;
h - thickness of the shell;
a, b - dimensions of the shell along the generator and along the
arc, respectively.

Fig. 1

The coordinate axes x, y, and z will be directed, respectively,
along the generator, along the tangent to the generating arc, and
toward the center of curvature. The displacements of the points of

the middle surface along the coordinate axes will be denoted by u, v,
and w.




We will consider the displacements u, v to be small in comparison
with the thickness of the shell, while the deflections w may be
comparable to the thickness.

The thickness of the shell is small in comparison with the radius
of curvature r.

The deformed state of the shell is characterized by six
quantities =-- the three components of the deformation of the middle

eg, eg, and ng and the three deviations of the curvature of the middle

surface Xy 2 xy, and Xxy -- which, under the stated assumptions, have

x " 9x T 2\%% /) *% 8x2 ’

the form

2 2
0 9 , 1(3 W _ 9%
o 9 Oy Oy 0%y

i.e., the six components of the deformation are expressed in terms of

the derivatives of the three functions, u, v, w along the x, y, z
coordinates. Therefore, the components of the deformation are not
independent functions of x, y, z but must be related by differential
relations. Differentiating the expressions in the left-hand column

of (1), we obtain one of these relations -- the equation of compatibility
of the deformations

20 520 20
0 ex 0 G_Y YX}[ 82W 2 32W azw 1 azw
2 v “\%y) "n2 S27r L2° 2)

For the orthotropic shell which is homogeneous across its width,
the properties of elasticity are characterized by four independent

parameters: E1 and E2, the longitudinal elasticity moduli along the

generator and along the arc of the shell; G, the shear modulus; by the
Poisson coefficient.



The cylindrical and the torsional stiffnesses of the shell
are expressed in terms of these parameters as follows:

3 3

Py = 12(1EEh y 3 P2 T 12(1E§h y ¢ Pk T G_g ' @

L) ik
The following known relation holds: /501
WiEy = BoEy- (4)

The elastic properties of an orthotropic shell which is not
uniform across its thickness are characterized by the following wvalues,
which are averaged (reduced) across the thickness: the moduli of
2, Eg, GO, and ug, which
characterize tension-compression and shear; and the four quantities,
El’ Ez, GO’ and Ko which characterize the elasticity of the shell in

elasticity and the Poisson coefficient, E

bending and torsion. The subscript 1 corresponds to the x-axis and the
subscript 2 to the y-axis.

We will express the components of the stressed state in terms of
the components of the deformation. The total deformation at any point
of the shell is composed of two types: the deformations in the middle

surface eo, €., YO and the bending deformations €', €', v' .
X ¥y Xy Ty Xy
The stressed state of the shell is characterized by eight

- s . 0 0
quantities: the three stresses in the middle surface Ox, Gy’ and

Tgy; three moments; M%, the bending moment per unit length of arc of
the shell cross=-section; My’ the bending moment per unit length of the
generator; ny, the torsional moment per unit length of the section;
and the two shearing forces Qx and Qy'

Since we will limit ourselves to the proportional region, we

will use Hooke's law to relate the deformations and the stresses (at
the same time, we take o, = 0);




X
[ = — g - g ; L 5
y "8 9 uyx) (5)
y
_1,
Yy = ¢ "xy’ -/
where Ex (z), E_ (z) - elastic moduli along the principal axes,
y variable across the thickness;
Gz - shear modulus;
by (z), uy (z) - Poisson coefficients for the principal axes.
For tension and shear in the middle surface of a nonuniform
orthotropic shell, the relation between the mean stresses and the
deformations has the form
o_1,0_ 00, .
° = 0 p‘loy) ? -\w
E
1
o_1 ,0_ 00, .
ey - 0 (Gy 'J'zo.x) ’ > (6)
E
2
o _1 o0
Yey = 0 Txy? -/

where the elastic parameters averaged across the thickness are
determined from the condition of equality of the forces for the non-~
uniform shell with elastic constants E_, E_, G, 4_, u_ to those for
¥y X Y 0 0 0 0
the uniform shell of the same thickness with constants El’ E2, G, Moo

Ng for identical deformations:




h/2 /502
o dz = hc:’0 ;
X X
~h/2
h/2
= ha? -
oydz = hoy ; ! (7)
-h/2
h/2
T .dz = hTO .
Xy Xy

Whence, considering (5), (6), and the equality of the defor-
mations, we obtain -
h/2

—..1___.1. __._EZ{_._d .
00 h Z s
L=y 1 - Mgk y
~h/2
h/2
E
—2 _1 —_— 4z -
00 h ;
L =uge, 1 - By
-h/2

h/2
00

l-p,u, E
p‘(]).=__6_];_2 ._X“X_.dz; b (8)

E2h 1 - “’}J‘Ly
-h/2

h/2

=

N
|

o
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On the basis of the hypothesis of straight normals and (1), the
components of the deformations in bending and torsion will be

, ok 0% 8%y
€x=-25§; ey=-zg;i; ny=-22'gx—ay. 9
From Hooke's law (5),
a! =_'—EL""(€'+ €) =- = (azw+ 2% -W
x 1- uypy x My y 1l - pry 3x2 My ayz) ?
R (¢! +pe!) =- o (82W+u 93) } (10)
y 1 - ux“y y Tx X 1 - MxHy 8y2 b4 X2 ?
32y
‘T;{y = GY;;y = - 2Gz 5;5'};

The bending and torsional moments per unit length, corresponding

to the stresses o', o', 7' , are
X Xy

y
h/2 h/2 h/2
= ' N = ! . = '
Mx = / o 2 dz; My f Oy z dz; ny f TX 2z dz. (11)
~h/2 ~h/2 “h/2 ¥
Substituting expression (10) here, we obtain /503
h/2 2 h
o [ (B, B ooy (B, 2
b4 1 ~p p 2 2 1 2 2 2/’
A S AT R 9y 9y
h/Z E 22 82 82 82 82
M ='/ T ( T H —¥>dz='D2<—§+“1'_¥); (12)
- x
y Jos2 bty \ay 8x dy 9x
h/2 92 92
H_ = - 2622 5 dz = - 2D FoAo
Xy x0y k Oxdy °
-h

/2 -
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where Dl’ D2, Dk - cylindrical stiffnesses of the orthotropic shell
in bending and torsion;
Koo uz'- reduced coefficients of lateral deformation in

bending. -
h/2 Exzz h/2 E Z2 h/2 )
D1=f m-;i—dz; D2=f —_X_I'IJ'}JJI dz; Dk=f Gz dz;
~h/2 y -h/2 y -h/2
(13)
h/2 2 h/2 2 '
T S R B . S
1 D2 1 - N ? 2 D1 1 - L
-h/2 7 ~h/2 4

By analogy with the uniform orthotropic shell of the same
thickness, the quantities Dl’ DZ’ Dk may also be expressed in the form

E.h> E.h> G ho
I L . L

- 2 = - 3 b .
1720 - pppt 2T 20 - e,y kT2

D (14)

from which, with consideration of (13), we may find the reduced values
of the elastic parameters of the nonuniform shell in bending and
torsion.¥

From the equilibrium of an infinitesimal parallelepiped cut from
the shell by planes perpendicular to the x- and y-axes, we can find the
equation of equilibrium. First, we will introduce the stress function
F, satisfying the equalities

2 2 2
0 0 9
-—g=00; ——%=00; E_.°. (15)
8,2 X a2 Y a0y XY
The equilibrium equation has the form
ok, 0%, 9%y
D, —= + 2D + D =
1 3x4 3 axzayz 2 8y4
2 2 2 2 2 2
% 9% , 9F (0w, 1 9°F 9w
=h . + + =1~ 2 : I el B (16)
[ay2 952 axz <3y2 r 0xdy xdy

*Equations (8) and (13) were obtained by G. G. Rostovtsev (Ref. 2).




Here,
2D3 = Dluz + Dzul + 4Dk. (17)

The equation for the compatibility of the deformatioms (2), /504
with consideration of (6) and (15), takes the form

F F F
K, —- + 2K +K =
2 44 3 5,24 2 1454
o 9x“0y Oy
(18)
x9y ax2 ayz r 3x2 ?
where
0
2u
=L = L. A S |
K2 = Eo, K1 = EO, 2K3 = Go EO . (19)
2 1 1

Equations (16) and (18) differ from the equations for the
flexible plate obtained by Rostovtsev by the terms which contain the
factor 1/r, the curvature of the shell.

The exact solution of the system of equations (16) and (18) is
scarcely possible. We will use the Ritz method for solution of the
problem. To do this, we need an expression for the potential energy
of deformation of the shell.

We write the expression for the specific potential energy
(Ref. 1):

T=1
U = 5 (0 e + cyey-+ ozez + T Y 4+ 7T v 4+

x Y.o.) . (20)

yz 'yz ZX zX Txy Xy

The potential energy U of the entire body of volume V

U=fffﬁdxdydz. (21)
A
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Since we are considering a very thin shell, the stress o, = 0

and the deformations sz =Y, = 0, and consequently,

=1
U=3 f“,"f(cxex + Gyey + Txyyxy) dx dy dz. (22)

The potential energy of deformation of the shell consists of

the energy of bending and torsion deformation, U ,» and the energy of
. bend

elongation and shear, USh

4] Ubend + Ush‘ (23)

Here

_..]L ] 1 4 1] T
Ubend =3 fff(ox ex+ O'y ey+ Xy ny) dx dy dz (24)
v

and

U, = fff( e+0 4+ 0 Yo)dxdydz. (25)
sh 2 y Xy Xy

Substituting in (24) the bending stresses from equation (10) and
the components of the deformation from equation (9), we have:

dy y
1 f_/ 52, \2 h/2 Exzz 82, 2h/2 o 2
= E S 'a—x-z— / ’1_—_—“'?— dZ + a—E 1 "_'XM;JJ""" dZ -+ [505
“h/2 y Y7 “hy2 y
h/2 2 h/2
2 2 2E L z 2 \2
9w 9%y 0%y 2
+ 2.2V 'S d .
3x2 5 / 1= “‘x“‘ dz + 4 (5;{-5; Gz dz | dx dy (26)
Y /2 ~h/2




11

Using expressions (13) for the reduced elastic parameters,

we obtain
2 \2 2 \2
1ff yw 0%y
bend 2 S [1 (axz) 2 (ayz

2 2 2 \2
p, L. 2wy [2E) | ax d 27
+ 24D, ox?  oy2 Dy 30y x dy. (27)

We will now substitute into (25) the values of the deformation
from equations (6):

1fff1 2 0.0 0
U = - ——O-_u'o-o' +
sh 2 A [Eg ( g 1 x y)

0

T

+ L 02 - uo 00 ? + | az ax dy. (28)

0\% ~*2%Y% 0
E2 y G

Here, we introduce the stress function for the middle surface
from equations (15). After integration with respect to z, we obtain

" =fo/[_1_(82_F)2+_1_(?_2£)2-
sh = 2 0\ 5.2 0\5.2
E2 X E1 y
2

S
2LL(1) ?%p 9% 1 a%p\?

-— 5 5+ % |l dx dy. (29)
B, %" %" ¢ y

2. LARGE DEFLECTIONS OF THE CIRCULAR CYLINDRICAL
ORTHOTROPIC SHELL UNDER COMPRESSION ALONG
THE GENERATOR

We will introduce the expression for the deflection w at shell
buckling in the form of the series

w = f1”1 + fzﬂz + f3ﬂ3 + e (30)
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Here, ﬂl, ﬂz, ﬂ3, .«. = certain functions of the x- and y-coordinates,
each of which satisfies the geometric boundary
conditions;

fl’ f2’ f3, ... = parameters to be defined,

We now introduce the expression for the energy of the system
=U - W, where U is the potential energy of deformation and W is the
work of the external forces as a function of the parameters fl’ fz,
f3, ... Now, from equation (18), substituting the value of the
deflection w in the form of the series (30), we obtain the stress
function F as a function of the parameters £f., £, £f., ...
12 722 73

The equilibrium states of the system are determined from /506

the condition of minimum system energy:

aHﬂ; i(gf-_m:o; @_f_-_mﬂ,;... (31)

1 2 3

The system of equations obtained by the Ritz method contains

the unknown parameters fl’ fz, f3, +++ The number of these parameters

is equal to the number of equations in the system (31). Thus, the

solution of the problem is reduced to the system of algebraic equations
(31).

As an expression for the deflection at buckling, we will use,
for the orthotropic shell, the same expression which was used by
A, S, Vol'mir in the study of the large deflections of the isotropic
shell (Ref. 3).

We will assume that the panel is long, i.e., that the dimension
along the generator is greater than the width. We will consider that
the edges of the panel are hinged on rigid members (it should be noted
that the constraint conditions have very little effect on the critical
stress of shells of significant curvature).

We will consider that the shell buckles at loss of stability
are of equal dimensions in the directions of the generator and the
arc, i.e., that they are nearly circular. This assumption simplifies
the study of the system (31).

We will now consider the expression for the deflection which
reflects the ellipticity of the buckle. This will be a refinement of
the solution which will more accurately reflect the actual nature of
the buckling.
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We will limit ourselves to two terms of the series (30):

w=f sin 22X g4 ——X-+ f sin2 X sin2 oy (32)
1 a a b

Since we will consider circular buckles, b = a, where a is the
length of m halfwaves along the generator; m = n, since we are
considering a long panel; n will be considered to be variable.

Thus, as an expression for the deflection, we will take

w=f, sin B gin B¥ 4 ¢ sin2 nIx sin2 oLy (33)
1 a a 2 a a
or
. . . 2 . 2
w = f1 sin o sin B + f2 sin” @ sin” B, (34)
where

. 15199 = RIY
a = a’ B a . (35)

Substituting (34) into (18), we obtain the expression for the
stress function

1 2

F = EEE; (f1 + f ) cos 20 + EEE- (f + f ) cos 2B -
1 1 2 12
512K2 f cos 4o - 512K1 f2 cos 4B + T — 32 f cos 2 cos 4B +
+ 1 f2 s 40 cos 28 R f2 cos 2 cos 2B +
32% Xq 2 1l6x e 2
+ 3 £f.f, sin o sin 38 + 3 f.f, sin 3 sin B -
Zx4 172 2x5 172
1 a2
- = f f, sin & sin B - f, cos 2o+ /508
x, 172 22 72
1 16K2rn n 9
a2 a2 Py
+ f, cos 20 cos 2B+ —=5— £, sin @ sin B - ——, (36)
22 72 2271 2
16x1rn n rx % n
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where Pg is the external compressive stress applied to the ends of the

shell;

Xy =K2+ 2K3+ Kl;

9 K2 + 8K3 + 16K1;

el
"

16K, + 8K, + K. ; (37)

3 2 3 1°

el
]

X, = K2 + 18K3 + 81K1;

5 81K2 + 18K3 + Kl.

b
(]

We will determine the energy 3 of the system for the segment of
the panel of length 2a along the generator and width b along the arc:

+ U, -W. (38)

9=U0 -W =0, a7 Usp

Substituting in (27) the expression for the deflection (33) and
integrating over the surface of the shell S, i.e., from O to 2a along
the x-axis and from 0 to b along the y-axis, we find that

ab . x'n*

Ubend = 4 4

+ D) + f2 (3D, + 2D
b 2 2 1

[fi (0, + 2D + 3D2)]. (39)

3 3

Substituting in (29) the expression for the stress function
(36) and integrating over the same section of the shell surface, we
find that

p2 4 4
0 . hab )y 4
U, =hab — + B2B [ (A £F + A+ A £ -
E p%
1
22

2
b - (A.afzf2 + A f ) + = 2 ( 1 + A7f2)], (40)
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where -
1 1 1
A, ===+ =] ;
1 64 (K2 Kl)
17 1 1 1 1 1 1
A = =+ =) + = + =+ ;
2 1 024 <K2 Kl) 32 (4x2 xl 4x3)
1 1 1 1 9 1 1
A, == (F+F )+ —+2 [+ =);
3 32 K2 K1> 2x1 8 (x4 x5>
1 1
A, = —— 4+ L, (41)
4 16K, © x; )
1 1 1
— — ——— + — H
A = T6 (KZ 1)
1
A = 2}
A = 1 ( 1, 1 )
16 K2 2x1
J
The work of the external forces /508
W= AZapOhb. 42)

Here, A 2a is the contraction of a panel of length 2a.

Obviously,
2a
0
A2a = -f '5;":' dx. (43)
0
We have
2
0 _8u, 1(3
ex - Fx--l- 2 (ax) (44)
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and
2 2
0o _1 ,0 00 1 (9°F 0 9°F
e =" (0 ~p0)=="1—%-u —=1}. 45)
1 1
Equating (44) and (45), we obtain
2
9y _ 1 f0%r o0 0%\ 1o
5§=_0(5—2"“1_2 T 2\%) - (46)
E1 y Ix
Then

W=-p f 0 2 "M o2 2 \ %% . (47)

Substituting (33) and (36) and integrating, we obtain
2p
_ P 2.2 L 2,3 2
W———EO hab+p01thn <4 f1+16 f2) . (48)
1

Thus, the energy of the system

hab [ﬂl‘nl’r 4 4

2.2
3= 2 b4 (A1f1-+ A2f2 + A3f1f2) -

2.2
1 n

2 3, , 1 2 2
- (A, £1£, + AE) + > (AgE] + A7f2)] +

ab n4n4

—— [ 2 2 -
+ 5 n [(Dl + 2D, + D,) f; + (3D; + 2D, + 3D,) fz]

2 2.2 1.2, 3 .2
- habKlpO = Py hn (4 f1+ 16 £ ) . (49)
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Conditions (31) yield a system of two equationms:

22 2A
1 n 2 2 4
£, [ - (4A £] + 28,£7) - — £, +
. o2 ,2A6+ﬂ2n2.D1+2D3+D2- ol
2 2 2 2 h Py ;
T n T b
2 2  (50)
“n 3 2 1 2 2
¥ (4A £, + 28,£7,) - = (A, £] + 3A.£5) +
+b2 .2A7f+ﬂ2n2.3nl+zn3+3nzf_§_ 4
2 2 7 Iy 2 h 2 " 4 Pot2
T n r b

This system of cubic equations (50) defines all possible /509
types of equilibrium states of the shell. We will be primarily
interested in those equilibrium states of the shell after buckling
(f1 # 0 and f2 # 0) which correspond to the minimal value of the

compressive stress Py-
This minimum value of the stress at which the equilibrium state

of the shell with large deflections is possible is called the "lower
critical stress."

For simplicity in the analysis of equations (50), we will
introduce dimensionless parameters for the stress, curvature, and
elastic properties. The dimensionless parameters are the similarity
criteria, and it is convenient to include in them both the experimental
and theoretical relationships.

The dimensionless parameter for the compressive load

Pp = —— _ 51)

2
b a— emm—
k=" =75, (52)
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The dimensionless parameters for the elastic properties

E

(53)

0 2G
- 26 oo\ . _ 0
2

They are convenient for comparison of the elastic properties of the
orthotropic shell with the corresponding properties of the isotropic
shell, since for the latter they are equal to unity.

Thus, the elastic properties of the orthotropic shell which is
not homogeneous throughout the thickness are characterized by the
following eight independent parameters (of which all except the first
are dimensionless):

0.0 [00 —
JEIEZ, D5 25 Y5 0y Z, YHHys g Bk,

or the other eight independent parameters

0.0 [ 00
EjEgs @5 85 Y5 U5 ¥, YRy, \/“1“2°

The properties of an orthotropic shell which is uniform across
the thickness are characterized by the four independent parameters
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VEIEZ’ v, O, p‘lp‘z or E].EZ’ P, v, "ulp' ’

since for such a shell,

’ 0.0 ’ ’ 00 r“—‘
} E1E2 = E1E2’ @ = C‘P, Y = 1’ Z = g’ p’lp‘z = p‘lp'z'

After transformation and the introduction of the dimension- /510
less parameters, the system of equations (50) takes the form

2
k 2 2 2, =2 =
+ 70" (44, + 2d,07) £] - 2d kof;;

; = nznze +

(55)

2
n’n? (Plaf3 + py?) f% -k (4, + p3az) £+ _%-E PO+ ﬂznzela =0, (56)
7n

where

£ £ £
r 1, 7 _ -2, - 2
B =ns H=g3 @ L

The constant coefficients in equations (55) and (56) have the
following values:

- Y 1
6 = 12(1 - “'1“'2) (\/E'I' A+ \/E)’ (57)

where

A =2 gfub, + 42 (1= upu,) =2 [‘[uluz + Y (1 - ulu»z)], (58)

i a, LY\,
1 *Teq1 - Hyko) (ﬁ"' o ¥ \/E)’ (59
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d = cp+B+—1:,
P
where
14+ Ypb
_1 0.0 12 ‘[ 0.0
B c 2 YHp, =2 m - Ve, b
-1 1
4 = %4 (VHE*' ;
Ve
B} 1,9 1 1
dy =24, + 57+ 3 g1 t T
o+ 9B+ == 814 o+ 9B+ —=

4 = ——+ 1
16 \[o
= -3

Py = 4dy = 5433

where

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)
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d, == d. + +
2 16 1 128 \F5'+ 4B + l%:
Ve
4 1
+ T+ 3 (69)[511

1 /1 1\,
d5‘16< +d)’ (70)

1 /1 1
d; 16(ﬁ+2d)' 1)

In the particular case of the isotropic shell, p=%¢=vyv=Y¥Y=1

and Biby =k = 0.3, the system of equations (55) and (56) has .the
form

2 2
P =3.62n% + —S— 4 L 2 (1+ 3.360%) T2 - 0.625kof ; (72)
2 2 8 1 1
4 n
2 3 =2 _5.(3 2 \=
n~ (l.465° - 3.220) f1 - 16 k(4 o 1) f1 +
3 K2 2
+ 35 ;E Q- 4.53n"a =0, (73)

i.e., it coincides with the system of equations obtained by A. S.
Vol'mir (Ref. 3).%*
"Upper critical stress," p,s 1is the term given to the value of

the stress at which two forms of elastic equilibrium are equally
possible: the initial-cylindrical and the buckled, infinitely close to

Reference 3 contains misprints in certain coefficients.
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the initial form; i.e., in determining P> the stability "in the small"

is considered. Setting ?1 =0 and Eé =0 in (55), we obtain the
equation defining the equilibrium state of the system for infinitesimal

deflections with differing numbers of halfwaves:

Pp =08+ 5o (74)

Using equations (55) and (56), we can construct the variation
of the compressive stress which will provide for the equilibrium state
of the shell as a function of the deflection.

To do this, we assume a value of the curvature parameter k and
determine from equation (74) the lowest value of Eb and the correspond-

ing value of n; these values will be ;;, the upper critical stress,

and n o, the corresponding number of halfwaves.

Then, for values of n equal to and less than n ., we determine

P, assuming for each value of n a series of values of . Substituting
a in (56), we obtain a quadratic equation in f1 and find its roots

(real and positive). Having ¢ and the values of the roots, from

equation (55) we obtain one or two values of p corresponding to one

(D =)
1 7

or two roots . The values of & must be assumed so that

equation (56) has real roots.
Similar calculations were carried out for the isotropic /512

‘shell. The plot of the relation p = P, (Ei) for k = 140 is presented
in Fig. 2. '

F}
160

/40

Byl n=3 n=Z ns]
aﬁ\\\‘_, ///
K
40 -

o

Fig. 2
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An analysis of the relatiom ; =9 (?1) was made by A. S.
Vol 'mir in Ref. 3. We will be interested here only in the lowest

balue of ; -~ the lower critical stress ;1.

3. THE CRITICAL STRESS FOR A COMPRESSED CIRCULAR CYLINDRICAL
ORTHOTROPIC SHELL

We will now derive the formula for the upper critical stress.
Equation (74) gives a family of parabolas in the Bb, k-coordinates

with parameter n. We will find the envelope of this family. We will
obtain the equation of the envelope if we exclude the parameter n from
the system of equations

where

k __=
2 2 Pg-
7T

F (k,; ,) = ﬁ2n28 +
1 0
nd

As a result, we find

Eu = 2k J:S- (75)

which is the equation of a line passing through the coordinate origin.
We will denote the slope of this line by Xy ? i.e.,

P, = X K> (76)

where

xu=2J_%. a7
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The quantity Xy T2y be obtained by another method. We find the

minimum of the function

P
_0 _nn® k
nn"d
We equate its derivative to zero:

2 2
X _.znb, 1 _,, (79)
ok 2 22

k xnd

This yields
k 2
n2 =7 \led. (80)

Substituting this expression in (78), we obtain (77).

Since n = 1 (the number of halfwaves cannot be less than
unity), from (80) we obtain the condition for which equation (77) is
valid:

k > 2 8d = k, . (81)
u
For a shell of small curvature (0 <k < klu) n =1, and /513

the upper critical stress parameter is determined from (74) in the
form

2
D = 226 + X (82)
u 2
nd
From (51), we have
—_— 2
- 0.0 h
Py = Py VElEZ 2 (83)




Substituting (76) and the expression for k (52), we obtain

when k = k

00

Pu = Xy YE1Ep

h
u u r’ (84)

For the small-curvature shell, substituting (82) in (83), we
obtain

1
u
0_0
2 E.E 2
_ 2 0.0 h” 12 _b_
pu—ﬂSVElEz 2+"—'—"'—2 > . (85)
» b - d r

Equations (84) and (85) are valid for a = b. They may be used
for any ratio of the sides of the panel, a/b, greater than unity,
since the critical stress of the simply supported shell does not vary
significantly with the aspect ratio of the panel for a/b > 1.

For the isotropic shell with u

0.3, Xy = 0.6, and consequently,
we obtain the familiar formula

h
0.6 E . (86)

]

when k > 12 Py

Using the method described at the end of Section 2, we can
calculate ﬁi. However, this method is not suitable in practice, since

it requires extensive computational labor which must be repeated for
any change in any of the elastic parameters.

Therefore, we shall turn to equations (55) and (56), which may
now be written in the form

=e§+§d+ 4d§f + 2d ‘§f - d4f2; (87)
p§f+ £F2 + 8,8, s 24 F -4 F - pE =0 (88)
1 PysEy 5y E T2 7 %M1 7 P33t ’
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where

=% - (89)

In brief form, the set of equations (87) and (88) is expressed
as:

X = FZ (f].’ f2’ €);
¢, (£, £, €) = 0.

We will find the relative minimum of the function F2 To do
this, we construct the function @ (f 2, €, A) = F (fl’ 2, £)
+ A 9, (fl’ 93 €), where A is the Langranglan mu1t1p11er (Ref. 4).

The necessary conditions for the extremum of the function /514
@1 yield a set of equations in the unknowns fl, f2, €, and A. These

equations have the form

od od ad
=0: =—La-0: —Log. —L_
1

The set of solutions (E , 3 » €., Ay) satisfying these
11 21 1 1

equations can give the minimum for the function F2.

We have

gld+4d§f +2d§f - 24, +

PN R 4 pEE2 T, + 06T, + 2T - a F - 2)
Pyskg T Ppaly Iy T Upsdy T 5 1, =4, £ - pg £y).

The set of equations (90) becomes

_4‘-
plgf +p2§f1 2+e§f g £, -d, f

2 "4 B - pyH = 0s 1)
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8d,5E) + A (2p,5EF, - 24,F)) = 0; (92)
GLA.ET. - 24, + A Op.EF2+ p.EF2+ 0.6+ % - 20 F ) =0; (93)
3°%2 4 Ppoty T Ppsly v 5 g P3ty) =05
0 -t 4a. T2+ 2472 +
2 151 3t
g€
+ A (plf1 + pzf1 £, + ele - gi f2) =0. (94)

We will solve the set of equations (91)-(94) as follows. From
(92), we will determine A and substitute its value into (93) and (94).
Then, we will make the change of variables

§f1 = X3 §f2 =y £° = z. (95)
The set of equations takes the form
3 2 2 2
P1¥y ¥ Po¥¥y " 9%y " P¥i t Byt 8yypzy = 05 (96)
a.y + ax> + +az +a =0; (97)
1717 8% T 8¥) T a7y T 8, ;
b.yS + box> + b,y> + b,y, + b.y.z, + bz, - b_ =0 (98)
Y17 P21 T Pa¥1 T PV T PsViE1 T P T Py ’
where
Py
a, = 3d1p1 - d3p2; a; = dlpz; b4 =3 4d1p4;
- 1 - ) - - ) - - .
ay = dyd, + 5 d,p, -~ 2d;p; by = 4dipy - 2d;py5 b = 4d,0, - p,8;
} (99)
ag = dle; b2 = 4d1d4; b6 = d49;
- 1.2, - X _ da
a, =dp, -5 d; by = 2d,d,; b, = 5
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From (97), we determine

2
X

1 2
T a, (a;y] + ayy; + azzg

]

+ aa).

Substituting the value of x2 in (96) and (98), we obtain

1

3 2 =0-
cly1 + c2y1 + c3yi + c4 ylz1 + c521 + c6 =0;

3 2 _
bly1 + c7y1 + c8yi + bsylz1 + cgz1 - c10 =0,

where -
P2 % 4 P2
€, =P, - = a,; ¢, =7 a,; ¢, =——"a, -— a + p,;
1 1 as 1 6 ag 4> 73 ag 2 ag 4 4
c, = Ei a EZ a P,; C5 = E& a, + b,; c,=b EQ a,;
= = 5 = s = = 3
2 ag 1 5 2 3 77 ag 1 3 79 6 ag 3
Py 5 24
4 =9 -3 a3 cg = b4 3. 213 °10 = byt by T
5 5 5
d
Ce = - a,.
5 ag 3
-
Multiplying equations (101) and (102) by b1 and ¢y and
subtracting one from the other, we obtain
2
oo At
1 A.3y1 + A4
where
A1 = c2b1 - cyCy5 A4 = blc5 - C¢4C9;
A2 = blc3 = ¢4Cgs A5 =«b1c6 - C4%0°

bscys

&
I
o
[y
(¢}
~
]

(100)

/515

(101)

(102)

(103)

(104)

(105)
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Substituting (104) in (102), we obtain the equation of the fourth
degree in the unknown ¥qpt

4 3 2 _
Bly1 + Bzy1 + 33y1-+ B4y1 + B5 =0, (106)
where
By = bjhs; B, = cghy = PshAg = cohy - ciphss
B, = b A, + c7A.3 - bSAl; B5 = - ch5 - c]_OA.4 (107)

2 174

™
|

3 T Oy T ocghy T Dghy - cghys
are the coefficients, expressed in terms of the elastic parameters.

Equation (106) may be solved by any of the approximate methods
[for example, the Sturm method (Ref. 5)].

Only the real positive roots are of significance. Substituting
the values of the roots in (104), we obtain Zq5 and substituting ¥y
and z. in (100), we obtain X Changing back to the original variables

1
by using (95), we find fl’ f2, and §, and then we substitute these

values in (87) and obtain Xy

We calculate the lower critical stress by the formula

0.0 h
P, = Xl E1E2 " (108)
for k = ki,
where
2
k, = 2= (109)
1§

We obtain the value of k1 from (89) if we set n = 1, /516




- We can make use of another method for obtaining the relation
P, = f(k), which is also suitable for 0 < k = kl'

Let k and n take fixed values (where the n are whole numbers).
We rewrite (55) and (56) as follows:

2
p = nznze + k + 4n2d n2f2-+ 2n2d n
Tt2n2d 1" 71 3

2=2
f2 - 2d

4kf2; (110)

22, =3, 2% =2, =
7 n (plf2 + p2f1 f2) -k (d4f1 + p3f2) +
+ =% 4 a2 E, = 0 (111)
I 2 = 0

This system may be written in short form as:

p=TFy (£, £5);

?, (fl’ fz) =0.

We will now determine the relative minimum of the function F3.

To do this, we construct @2 = F3 + A Py The extremum of the function
F3 is determined by the set of solutions (?1 , EZ , kl), which is
obtained from the equations 1 1

od o¢

0y =0; =2=0; -0, (112)
dF, 3F,
i.e.,
22 =3, 22 =2= =2 ~2 Py o= 22, = _
*'np f, + xnp,Ey £, - 4,k £ - pkE, + 5 Kf, + x'n0,f, = 0; (113)
8x°n’d T, + A (2xn’p,E,E, - 24,KE,) = 0; (114)
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22, = 22 =2
4 n d3f2 - 2d4k + A (3a'n plf2 +
2.2 =2 - Py 2 22 .
+ 7' n p2f1 2p3kf2 + nznz k" + °n 91) =0, (115)

Excluding A from this set, we obtain

=3, == 2 = -
elf2 + erle e3f1 - e4f2 + e5f2 =0; (116)
_2 —
S £, + Sy, + 8, =0, (117)
where
_ 2 2, _Pa 2. 2, 2 T
°1 Pits & 7792 TR
n
= 2, = 9. - 4,
e, = T p,n; S1 = 2x (3d1p1 + dlp2 d3p2) n ;
2 9 (118)
e, = d4k; 82 =1 (2d3d4 + d4P2 - 4d1p3) kn";
_ . _ Y 2 4 4
e, = p3k, S3 = (2d1p4 d4) k™ + 2x dleln .
.

_ Solving the quadratic equation (117), we obtain two values of
fz, and from (116), we have

=2 _ 172 42 5 =
f1 = ~ f2. (119)
ey = &ty
We must use only that positive root of equation (117) /517

which does not make the right side of (119) a negative quantity.
In order to obtain the values of the lower critical stress for
0 =k = kl, it is necessary to set n = 1, calculate the coefficients

(118) for a given k, determine the values of El’ Eé, and substitute
them in (110).
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Performing the calculation for a series of values of k, we
obtain the relation 51 = fl(k) for n = 1.
By the same method, we can determine Py = fn(k) forn =2, 3, ...
Here, the increasing value of k corresponds to the larger values of
n (k= k,).
1
Figure 3 presents a plot of ;i = fn(k) for the isotropic shell

calculated by this method. The values of pﬁ are also shown.

T T T
Isotropic ]b
I |

i
e

R R B

Fig. 3

As may be seen from the graph, the curves of the lower critical
stress parameter for a shell of large curvature approximate a straight
line passing through the coordinate origin. The slope of this line
Xl = 0.35%. A different value for Xl was obtained in Ref. 3 as a

result of inaccuracies in the coefficients of the set of equations (72)
and (73).

The magnitude of the slope of the straight line, which is the
envelope of the family of curves ;1 = fn(k) for various n, may be
determined analytically, as indicated above [system (90)].

Calculations were performed for certain combinations of elastic

parameters of an orthotropic shell; the results are presented in the
Table.

*This value is too high and will be refined in Section 5.
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00
A @ ) ¥ Y ks pluz Xy X1 Shell
1 1 - 1] - - 0.3 ]0.606 [0.350 | Isotropic
1 2 - 1 - - 0.3 10.605 |0.412 | Uniform across
thickness, ortho-
tropic
1 3 - 1 - - 0.3 10.605 {0.449 | Same
1 1 - 0.5] - - 0.3 |0.428 {0.320 | Same
2.4111.72 | 9.97{0.718(0.265|0.244] 0.101{0.817 {0.645 | Dural specimens
with longitudinal
stiffeners

We can draw certain qualitative conclusions from these results
concerning the effect of the elastic parameters on the parameters Eﬁ

and ;1. For example, with increasing p or decreasing {, the difference

between the upper and lower critical stresses diminishes. At the same
time, it is clear that there is a reduction of the possibility of
"snap" occurring during the buckling.

4. SEQUENCE OF THE CALCULATION OF THE CRITICAL STRESS /518
FOR COMPRESSION OF THE CIRCULAR CYLINDRICAL
ORTHOTROPIC SHELL

1. Determine the elastic parameters of the shell material
experimentally or theoretically (see Ref. 6).

2, Calculate E?Eg and the dimensionless elastic parameters
(53), (54).

3. Calculate the coefficients (57)-(71).

4. Determine the coeffcients (118).

5. Assume the number n: for small k, take n = 1, for large k
assume several values n =1, 2, 3, ... Do the same in the case in
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which the value of k1 is unknown and it is impossible to establish
whether the value of k is greater or less than the value of kl [to find
kl’ it is necessary to solve the set of equations (87), (88), and this
requires a great amount of time].

6. Solve the system (116), (117), and substitute the solution
in (110). For small k, formula (110) gives the value of 31. For large
k, it is necessary to carry out these calculations for several values

of n and take the lowest value =-- which will be Ei.

If it is required that we find the quantity Xq2 then, after
point 3, we should:

4, Determine the coefficients (99), (103), (105), (107).

5. Solve equation (106) approximately and find x, from
1
formula (87).

The magnitude of X, can also be found as the slope of the

envelope of the family of curves ;1 - fn(k) with the parameter n.

To determine the upper critical stress parameter, it is
necessary, after step 2, to

3. Calculate the coefficients (57), (58), (60), (61).
4. Determine ;;‘from equations (77), (84), (85).

An example of the calculation of ;i for a specimen which has

been tested experimentally (Ref. 7) follows.

The specimen consisted of a thin sheet wrapped into a circular
cylinder and reinforced with closely spaced stiffeners along the
generator on both the inside and outside. Frames were used at the
edges and the ends, which corresponded approximately to the boundary
conditions used in the theoretical consideration of the problem.

The cross-section of the specimen perpendicular to the generator
is shown in Fig., 4. The stiffener spacing is 2.5 cm, h = 0.077 cm; the
section of each stiffener is ash1 =0.9 - 0.077 = 0.0693 cm2. The width
of the specimen along the arc is b = 20 cm, the radius of curvature is
r = 18.7 cm, and the length a = 40 cm. The sample is made of dura-
luminum.
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Fig. 4

1. We will refer all the parameters of the shell stiffeners to
the thickness of the sheet h. The elastic modulus along the arc is
equal to the modulus of the material Eg =E =75 . 105 kg/cmz. The
elastic modulus Eg along the generator, from the condition of /519

equality of the forces on a unit length of the section, must be
increased in the ratio fl/fz’ where fl is the area per unit length of

the section perpendicular to the generator and f, is the area per unit

2
length of the section parallel to the generator:

f1 a
—==1+2-2=-1.72,
: &
2
i.e.,
0 £ 5 20 5 2
E1 =E e 12.9 + 107 kg/em; G =G = 2.84 - 107 kg/em™
2 0
W = =0.32; p? =0 20,186,
1 2 ¥
Ey

\/uluz =\/o.3z - 0.186 = 0.244.

The cylindrical stiffness of the reinforced shell (Ref. 6),

3 '
D = Eh AR

1 12 (1 - N'2) t
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Eh3
Dy= =" 3
12 (1 - p9)

Eh3
Dy =5
12 (1 - u%)

where E, E' - moduli of the shell and the stiffener (E' = E);
J - the moment of inertia of the area of the section of the
stiffener relative to the middle surface,

2 ahi 2
3 =2 ahp +—-’i7- =2 (9 « 0.077 « 0.079° +
9 . 0.077° 4
+ B = 0.000931 cm".

Here, p is the distance from the center of the area of the stiffener to
the middle surface (p = 0.079 cm);

L
Ezi = 280 kg/cm;
D2 = 31.2 kg/cm; D1 = 311 kg/cm; D3 = 31.2 kg/cm;
b, B D, sm
- =—==%; D " 31.2 " 9.97;
2 2 2 :

E, =7.5 10° kg/em®; E, = E, = 74.8 - 10° kg/en’;

G, =G =2.8 - 105 kg/cmz; Wy =KW = 0.32;

D
—u. =2 = . = . = .
My =k 5o =0.032; (JujE, = \/0.032 - 0.32 = 0.101;

2. ‘/E(I)E(z) = 9.45 - 10° kg/em?;
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the dimensionless parameters:

© =1.72; ¥ =0.718; ugucz) = 0.244; Y = 2.41;

& =9.97; Y =0.265; By = 0.101.

3. The coefficients of the system (55), (56) have the /520
following values:

A =0.678; d2 =0.0411; d =5.05;

B = 2.978; d3 =0.185; Py = - 0.113;
8 = 0.843; d4 = 0.2456; Py = 0.272;

92 = 1.63; d5 = 0.,06; Py = 0.188;
d1 = 0.0324; d7 = 0.,0538; Py = - 0.0407.

4. The coefficients of (118) in the given case will be

ey = - 1.112n2; Sl = - 10.22n4;

2 2
e, = 2.686n" ; S2 = 1.796kn";
ey = 0.246k; 83 = 10.3n4 - 0.0628k2;
e, =" 0.188 k;

2 k2
e = 16.09n" - 0.00412 =

n

5. The curvature parameter is equal to k

= b2/rh = 284,
The calculation was carried out forn =1, 2, 3; n =2
2.

yielded the lowest

p. We will show the calculation only for n =
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For k = 284 and n = 2,
e = - 4.45; & = - 18.8;
e, = 10.74; S1 = - 163.3;
ey = 69.7; S, =2 040
&, =" 53.4; S3 = - 4 900.
Equation (117)
- 163.3 EZ + 2 040F, - 4 900 =0

has the roots Eé = 3.24; 9.26.

From equation (119), we find

2 _-4.45 ~ 10.5 + 53.4 - 3.24 - 18.8

£ = 69.7 - 10.74 - 3.24 324 =10.
The root Ezz = 9,26 gives the minimum value of El and therefore we
disregard it.
According to formula (110) we obtain
- 2842
Py = 8.315 -« 4 + 0.02005 -j:—-+ 4 < 1,279 =10+ 4 » 3.65 ¢ 10.5 -

- 0.4912 - 284 - 3.24 = 189.

The calculations were performed in a similar fashion for several
values of k. These calculations established that in this case, the
slope of the tangent to the curve 51 = f(k) (i.e., xl) is equal to

- *
0.645. Then, Py =Xq * k = 0,645 = 284 = 183, The lower critical

stress 1

It is possible not to calculate Xq and limit oneself to the value

obtained above with the formula (110): Py = 189.
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2 2
~ [00h _ 00 h° _ ... . . 1n5 0.077° 2
Py =X E1E2 - =P E1E2 b2 = 183 * 9.45 10 202 = 2 490 kg/cm" .

In the experimental testing of this specimen, the critical /521
stress, referred to the shell thickness, was found to be P, = 2,180

kg/cmz; i,e., the critical loads, P1 = plbh, from the theoretical
computation and from experiment were P1 = 3.840 kg and Pe = 3.360 kg,
Pe/PI = 0.875. This ratio between the theoretical and experimental

data is acceptable in stability calculations.

The magnitude of Xy = 0.35 obtained for the isotropic shell

(see Fig. 3 and Table) is also sufficiently close to the average
experimental data for the isotropic shell (Ref. 3), which give x = 0.3;
i.e., P, = 0.3 Eh/r.

However, it must be kept in mind that the shell may buckle at
stresses below the average values. Therefore, in design calculations,
it is necessary to use values somewhat below the theoretical values of
the stresses.

5. REFINED SOLUTIONS

We will use (32) as an expression for the deflection at
buckling:

ax sin EEI-+ f sin2 nIx Sin2 oy .
b 2 a b

w = f1 sin

We will denote a/b = € - the ratio of the length of a halfwave
along the generator to the length of a halfwave along the arc. We will

take the quantity ¢ to be fixed, not varying with changes in f1 and f2.

The solution performed by the method described in Section 2 gives the
following results: the system of equations (55) and (56) remains
unchanged, but its coefficients 6, 91, d, d1 will have the form

5 Y \[g €2

= + A+ — 5 57’
12 (1 - uluz) €2 \[E ( )
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+ == (59")
Ve, ,, <
d =4+ B+ ; (60')

2

1 64 o c
1 9 1 1
dy =2d, + 2T 38 + ; (63")
" 2 2
2+9B+81€ 812CP+9B + =
€ V(P € P
2
€ 1
d, = + = 64")
“ "l g @
17 1 1 4 1
d, =3+ d+ + -+ H (69")
2 16 128 ﬂ 16 G:2 d 16]! €2
> + 4B + 5+ 4B+ ——
€ V(P € P
2
L (e, 1), '
d5 =16 cp+d 3 522 (70")
2
4, ==(=4+ L), (71")

The coefficients Pys Py> P3s P, are determined by the same

equations (65), (66), (67), and (68) but with consideration for the new
values of the coefficients dl’ d2, d3, d4, d5, d7, d.
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_ To determine the values of the lower critical stress parameter
Py we will use the method presented in Section 3. 1In doing this, it

is necessary in all cases to take the values of the coefficients of the
equations from this Section. Thus, assuming a definite value of ¢ and
using the sequence of calculation shown in Section 4, we can, for any

circular cylindrical orthotropic shell, determine 51 for various k for

the number n = 1, 2, 3, ... Assuming a series of values of ¢ and
performing the calculations for each of them, we can establish that
€ =€, for every value of k for which ﬁi is a minimum. This value of

ﬁi is then used for the lower critical stress parameter in the given

approximation.

Pr

50 //5@9K
\\\ ///)////mm
S0 \\\\\ /////
s L” -2 7 1120
S
SDL“~ ::Eii”Q\\\ /00
_____ n=1 n
11— 60
0 T~ gg
\'_—_f———// 0
b/j £

Fig. 5

For the isotropic shell, which is a particular case of the
uniform orthotropic shell, the calculation was made and a graph of
ﬁl = f(e) was constructed. From the plot (Fig. 5), it may be seen that

with an increase in the shell curvature parameter k, there is a change
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in the value of e at which El is a minimum. Thus, for a plate (k = 0),

the minimum occurs for ¢ = 1, which corresponds to a square wave, while
for k = 100, ¢ = 1.71, At some curvature (in this case, for k = 113),
it is found that there are two identical minimum values of Ei for

€y = 1.72 and €y = 1.37, corresponding to the number of halfwaves along

the arc n =1 and n = 2. With an increase in the curvature (k > 113),
the minimum value of Bi corresponds to n = 2, while €9 rises from 1.37

to 1.68 for k = 350 with an increase in curvature, where the equilibrium
form with minimum 31 corresponds to n = 3,

We may conjecture that with a further increase in the curvature
k, the value of € will tend to a definite magnitude close to 1.5.

From the data of Fig. 5, the curve ;1 = fn(k) is constructed
through the points corresponding to the minimum value of Ei. The
values of € corresponding to the minimum Py as a function of k are
also shown.

Figure 6 shows that the coefficient Xq is equal to 0.26 for an

isotropic shell of relatively large curvature; i.e.,

for k = 50 ;1 = 0.26k or 0, = 0.26 i—h , [523 (120)

1

while for the shell of small curvature,

2
for k <50 p; =3.6+ 0.19 kor o, =3.6 E&+0.19 8 (191)
b

The plot of ;1 = fn(k) (Fig. 6) is constructed for an isotropic

shell but is entirely applicable to an orthotropic shell with the
parameter § = 1, the only change in this case being the change in the
quantity €9 corresponding to the minimum value of 31. This can easily

be observed from the expressions for the coefficients of the system
>
€

in the degree of orthotropicity ¢, there is a change only in the value

(55), (56). These coefficients depend on the quantity With a change
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of € corresponding to ;1, while the minimum value of ;1 itself does
4
not change. An m-fold increase of ¢ causes an ‘ﬁ; fold increase of

€y Thus, for k = 60 for the isotropic shell, Ei = 15.6 for €y = 1.6

(Fig. 6), while for the uniform orthotropic shell (y = 1 for ¢ = 16),
the lower critical stress parameter remains the same (p, = 15.6), but

the form of the buckling is characterized by more elongated buckles,
4

4
' o= = =
namely, €y = € V—CP 1.6 1’16 3.2,

For orthotropic shells with the parameter § different from
unity, it is naturally not possible to use Fig. 6 or equatioms (120),
(121). However, using the method described here, we can establish the
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relation of X, as a function of {, which is suitable for the calculation

of % for the shells of large curvature, and similar relations for

shells of small curvature.
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For circular cylindrical orthotropic shells which are non-
uniform across the thickness, including the structurally orthotropic
panels, it is possible by use of similar calculations to establish
the Eelation for X as a function of the elastic parameters v, {,
and Y.

Translated by Joseph L. Zygielbaum
Electro-Optical Systems, Inc.
Pasadena, California
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